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Abstract. We carry out a detailed analysis of the mixing process during the interaction of a
single-mode field initially in a number state with a thermal reservoir. We prove that a maximum in
the evolution of the 2-entropy of the attenuated mode exists provided that its initial photon number
exceeds the mean occupancy of the reservoir. This transient mixing enhancement can be considered
as a quantum effect of the initial state on the mode damping.

1. Introduction

The decay of a single-mode radiation field in a dissipative environment has been studied,
in particular, in connection with the decoherence of the system [1–3]. Zurek et al have
used the master equation of the quantum Brownian motion to model the interaction with an
environment and have found the coherent states to have the least increase in entropy (maximal
states). In their treatment the coherent states are thus the most classical ones [1]. Most
recently, Părăoanu and Scutaru [3, 4] gave a comprehensive discussion of decoherence as a
mechanism for the selection of maximal states within the framework of the Lindblad equation
formalism [5]. In the case of Gaussian states they have found that, in general, the maximal
ones are determined by the diffusion coefficients of the environment. Note that, apart from
the advantage of describing many interesting phenomena, the master equations of Lindblad
type have the essential property of preserving the positivity of the density operator. As a
consequence, the Robertson–Schrödinger uncertainty relation holds at any time [6]. The
quantum optical master equation [7], which is of the Lindblad type, has been frequently used
to study the destruction of non-classical properties of a field state by thermal noise [8–10].
For example, in [10] we have found a limit time at which all squeezing effects disappear by
decoherence, regardless of the initial state of the mode. On the other hand, recent works report
that, in special cases, the environment enhances non-classical properties. In [10–12], a single-
mode field in a superposition of two coherent states weakly coupled to a heat bath at zero
[11] or very low temperature [10, 12] was studied. It was found that fourth-order squeezing
[11, 12] and, more generally, squeezing to any order [10] could be created transiently due to
the interaction with the environment.

Similarly to our earlier work [10], here we make use of the quantum optical master
equation in order to investigate the evolution of mixing when a one-mode field initially in a
non-classical state is put in contact with a thermal bath. An efficient tool to analyse the mixing
produced by the environment is the 2-entropy of the damped mode. In [10] we found very
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interesting features of the mixing when the input field is in an even coherent state. We now
show that apparently these features are common to other non-classical states. We have chosen
to analyse the behaviour of the 2-entropy of a fundamental quantum state, the number state,
when admixed with thermal noise.

This paper is organized as follows. In section 2 we express the solution of the master
equation in terms of the characteristic function (CF) of the initial field state. The 2-entropy
of a damped Fock state is evaluated and discussed in section 3. From the analysis therein,
we distinguish a classical regime of mixing from a non-classical one by comparing the initial
mean photon number of the mode with the mean occupancy of the reservoir. In section 4 we
point out the loss of non-classicality by means of the P representation of the density operator.
Section 5 summarizes our conclusions.

2. Characteristic function of the damped mode

We deal with a single-mode radiation field of angular frequency ω whose amplitude operators
are denoted by a and a†. For any state of the field the CF [13] defined as the expectation value
of the Weyl displacement operator D(λ) = exp(λa† − λ∗a),

χ(λ) = Tr[ρD(λ)] (2.1)

determines uniquely the density operator ρ. Indeed, the CF is the weight function in the Weyl
expansion [14] of the density operator,

ρ = 1

π

∫
d2λχ(λ)D(−λ). (2.2)

The normally ordered CF,

χ(N )(λ) = Tr(ρeλa†
e−λ∗a) (2.3)

has the Taylor expansion

χ(N )(λ) =
∞∑
l=0

∞∑
m=0

1

l!m!
λl(−λ∗)m〈(a†)lam〉 (2.4)

from which one readily finds the expectation values 〈(a†)lam〉 which are necessary when
examining the statistical properties of the state. Note also that the Fourier transform of the
normally ordered CF is the Glauber–Sudarshan P representation [15],

P(β) = 1

π

∫
d2λ exp(βλ∗ − β∗λ)χ(N )(λ). (2.5)

We now consider a weak coupling of the field mode with a thermal reservoir whose mean
occupancy is n̄R . In the interaction picture, the evolution of the reduced density operator of
the field is described by the quantum optical master equation [7],

∂ρ

∂t
= 1

2γ (2aρa
† − a†aρ − ρa†a) + γ n̄R(a

†ρa + aρa† − a†aρ − ρaa†) (2.6)

with γ the field-reservoir coupling constant. Equation (2.6) is derived in [7] on physical
grounds: the field is sustained by a cavity which stands for the environment. The effective
interaction between the mode and the cavity consists in photon scattering into and out of the
mode. For weak coupling this leads to the rotating-wave approximation. By adopting the
Markov approximation to the second order in the interaction, it is recognized that the reservoir
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correlation time is negligible on a time scale ∼1/γ in which the mode loses significant energy.
Equation (2.6) allows for the diffusion of fluctuations of the reservoir into the system mode
(the γ n̄R terms).

Our method in treating the evolution of the damped field is to use its CF via the Weyl
expansion (2.2). This expansion is valid at any time due to the remarkable properties of the
master equations of the Lindblad type [6]. To this end, we convert the master equation (2.6)
into a first-order partial differential equation for the normally ordered CF. We find

∂χ(N )

∂t
= −γ n̄R|λ|2χ(N ) − (

1
2γ − iω

)
λ
∂χ(N )

∂λ
− (

1
2γ + iω

)
λ∗ ∂χ

(N )

∂λ∗ . (2.7)

The solution of this equation, given by the characteristic-curve method [16], depends on its
initial form χ(N )(λ, 0) as

χ(N )(λ, t) = χ(N )(λe−(γ /2−iω)t , 0) exp
[−n̄R(1 − e−γ t )|λ|2]. (2.8)

In contrast to the CF, which is picture independent, the diagonal P representation is not. It
is easy to show that, in the interaction picture, one has to use in the Fourier integral (2.5) a
modified form of the CF from which the oscillatory factors were removed. For a more detailed
account of this issue see [9], section 2.

The mean photon number of the damped state is obtained from the normally ordered
CF (2.8) as

n̄(t) = n̄(0) e−γ t + n̄T (t) (2.9)

where

n̄T (t) := n̄R[1 − exp (−γ t)] (2.10)

is the thermal mean occupancy in the field mode at time t . The significance of the
factorization (2.8) is quite clear: it describes the superposition of the attenuated field with
a thermal one whose time-dependent mean occupancy is n̄T (t), equation (2.10). Therefore,
the decay of the field mode ruled by the quantum optical master equation is a thermalization
process.

3. Mixing by damping

It is convenient to employ as a measure of the degree of mixing the 2-entropy

S2(ρ) := − ln[Tr(ρ2)]. (3.1)

Equation (3.1) is the special case α̃ = 2 of the quantum-mechanical counterpart of a Rényi
α̃-entropy [17],

Sα̃(ρ) := 1

1 − α̃
ln[Tr(ρα̃)] (α̃ > 0). (3.2)

Now we focus on the mixing process described by the master equation (2.6) when the
initial state is a Fock state with the photon number denoted by M . The CF of a pure number
state is the corresponding diagonal matrix element of the displacement operator in the Fock
basis. We recall its expression,

χ(λ) = 〈M|D(λ)|M〉
= exp

(− 1
2 |λ|2)LM(|λ|2) (3.3)
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where LM(x) denotes a Laguerre polynomial. According to equation (2.8), the CF of the
damped number state is

χ(λ, t) = exp
{−|λ|2 [

n̄T (t) + 1
2

]}
LM

(|λ|2e−γ t
)
. (3.4)

The Weyl expansion (2.2) yields the time-dependent degree of purity as the integral

Tr{[ρ(t)]2} = 1

π

∫
d2λ |χ(λ, t)|2. (3.5)

In the case of a damped Fock state, the relation between a Laguerre polynomial and the
confluent hypergeometric function 1F1,

L
(µ)

l (x) = (µ + 1)l
l!

1F1(−l;µ + 1; x) (3.6)

allows one to take advantage of the well known integral [18]∫ ∞

0
dt exp (−st)tc−1

1F1(a; c; σ t) 1F1(a
′; c; σ ′t) = "(c) sa+a′−c(s − σ)−a(s − σ ′)−a′

×2F1
(
a, a′; c; σσ ′(s − σ)−1(s − σ ′)−1

)
. (3.7)

In equation (3.7), 2F1 is a Gauss hypergeometric function. The result is

Tr{[ρ(t)]2} = [2n̄T (t) + 1 − e−γ t ]2M

[2n̄T (t) + 1]2M+1 2F1

(
−M,−M; 1; e−2γ t

[2n̄T (t) + 1 − e−γ t ]2

)
. (3.8)

To obtain a more suitable analytic form of the Gauss function, we apply the transformation
formula [18]

2F1(a, b; a − b + 1; z) = (1 +
√
z)−2a

2F1

(
a, a − b + 1

2 ; 1; 4
√
z

(1 +
√
z)2

)
(3.9)

and find

Tr{[ρ(t)]2} = 1

2n̄T (t) + 1
2F1

(−M, 1
2 ; 1; v(t)). (3.10)

The argument of the Gauss hypergeometric function in equation (3.10) is

v(t) := 1 − [η(t)]2 (3.11)

where η(t) is a convenient dimensionless variable determined by the reservoir only:

η(t) := 1 − 2e−γ t

2n̄T (t) + 1
. (3.12)

Note thatη(t) is a strictly increasing and concave function of time which varies fromη(0) = −1
to η(∞) = 1, having its zero at the time

tm = 1

γ
ln

(
1 +

1

2n̄R + 1

)
. (3.13)

At the same point tm the function v(t) has a unique maximum v(tm) = 1. According to
equations (3.1) and (3.10), the 2-entropy for a damped Fock state is

S2[ρ(t)] = ln[2n̄T (t) + 1] − ln
[

2F1
(−M, 1

2 ; 1; v(t))]. (3.14)

Now, we analyse the evolution of the 2-entropy by using its first-order time derivative,

∂S2[ρ(t)]

∂t
= γ (1 − η)w(η). (3.15)
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In equation (3.15) we have introduced the function

w(η) := n̄R − Mη[1 + n̄R(1 − η)]
2F1

(−M + 1, 3
2 ; 2; 1 − η2

)
2F1

(−M, 1
2 ; 1; 1 − η2

) . (3.16)

The initial value of the slope (3.15),

"m := ∂S2

∂t

∣∣∣∣
t=0

(3.17)

can be defined as a conventional rate of mixing, since it is a measure of the rapidity with which
the initial state loses its purity. Note that the rate of mixing is

"m = 2γ [n̄R + (2n̄R + 1)M] (3.18)

and increases with the initial photon numberM in the mode, as well as with the mean occupancy
of the reservoir n̄R . At the time tm, the slope (3.15) reaches a value independent of M ,

∂S2

∂t

∣∣∣∣
t=tm

= γ n̄R. (3.19)

An important point of our discussion is the sign of the derivative (3.15) for large times. Let us
note its asymptotic limit

lim
t→∞

∂S2

∂t
= γ (n̄R − M) lim

η→1−0
(1 − η). (3.20)

When n̄R − M > 0, we have succeeded to prove that the function w(η) is positive for
every η. Consequently, the 2-entropy is then a strictly increasing function of time. This regime
of mixing may be called classical because such a behaviour of the 2-entropy is typical for a
coherent (quasi-classical) state [9, 10].

In contrast, when n̄R − M < 0, the 2-entropy has at least a maximum because its first-
order time derivative, equation (3.15), changes its sign between η = 0 and 1. In [10] the
regime of mixing characterized by a maximum in the evolution of the 2-entropy has been
termed non-classical. For n̄R > 0, owing to the rather complicated transcendental nature of
the function (3.14), a maximum of the 2-entropy, when existing, cannot be found by analytic
means. However, a lower bound of the maximal entropy is the value

S2[ρ(tm)] = ln

(
2n̄R + 1

n̄R + 1

)
+ ln

[
M!2M

(2M − 1)!!

]
(3.21)

which provides a measure of the degree of mixing. This is the reason for having denominated
tm in [10] as the mixing time.

The most typical example of a non-classical regime of mixing is afforded by the damping
in contact with a zero-temperature bath (n̄R = 0). We are justified in calling dissipation
this kind of damping. Equations (3.17) and (3.13) show that the 2-entropy reaches a unique
maximum precisely at the mixing time

tm = 1

γ
ln 2. (3.22)

According to equation (3.21), the maximal entropy

S2[ρ(tm)] = ln

[
M!2M

(2M − 1)!!

]
(3.23)
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Figure 1. Time evolution of the functions u(t), v(t) and S2[ρ(t)] when the mean occupancy of the
bath is n̄R = 0.1 and M = 3. The bath is characterized by γ tm = 0.606 and γ tc = 2.398.
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Figure 2. As in figure 1, but for n̄R = 2.5 andM = 5. We have here γ tm = 0.154 and γ tc = 0.336.

increases with the initial photon number M . To resume, dissipation of the mode specifically
includes for t < tm a mixing of the initial Fock state with the rate "m = 2γM , followed at
times t > tm by a complete demixing ending in the vacuum state.

In figure 1 we have plotted the functions u(t) := 1/(2n̄T (t) + 1), v(t) and S2[ρ(t)],
for n̄R = 0.1 (γ tm = 0.606) and M = 3. Note that u(t) decreases from u(0) = 1 to
u(∞) = 1/(2n̄R + 1). For small values of n̄R , as in figure 1, the evolution of the 2-entropy is



Evolution of mixing during the damping of a number state 3601

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

S2[ρ(t)]

γ t

M = 1
M = 3
M = 6

Figure 3. 2-entropy production governed by the master equation (2.6) for an input Fock state
plotted for several values of M and for n̄R = 1.5. Note that in this case γ tm = 0.223; γ tc = 0.511.

close to that displayed in the dissipation case. In particular, the time tm at which v(t) reaches
its maximum is a good lower approximation for the time tmax corresponding to the maximum
of the 2-entropy. The situation changes for larger values of n̄R when tm decreases and the
difference tmax − tm increases in agreement with equation (3.19). This case is illustrated in
figure 2 (M = 5, n̄R = 2.5, γ tm = 0.154).

In figure 3 we have plotted 2-entropy versus γ t for several values of M when n̄R = 1.5
(γ tm = 0.223). The graphs exhibit a monotonic increase of 2-entropy for n̄R − M > 0
(case M = 1, classical regime) and a unique maximum for n̄R − M < 0 (cases M = 3, 6,
non-classical regime).

4. P representation

In the interaction picture, the P representation is the Fourier transform of the non-oscillating
normally ordered CF:

χ(NI)(λ, t) := χ(N )
(
λ exp

(− 1
2γ t

)
, 0

)
exp [−n̄T (t)|λ|2]. (4.1)

When using equations (4.1) and (3.4) in equation (2.5) we are left to evaluate the integral

P(β, t) = 1

π

∫
d2λ exp[βλ∗ − β∗λ − n̄T (t)|λ|2]LM(|λ|2e−γ t ). (4.2)

This can be easily done in an indirect way. We first perform a similar integral in which LM(x)

is replaced by the generating function of the Laguerre polynomials [19]

(1 − z)−1 exp

(
xz

z − 1

)
=

∞∑
M=0

LM(x)zM |z| < 1. (4.3)

The formula applied to this end,∫
d2λ exp(βλ∗ − β∗λ − K|λ|2) = π

K
exp

(
− 1

K
|β|2

)
K > 0 (4.4)
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is a particular case of the Gaussian integral (A6)–(A8) from our paper [20]. In both sides of
the resulting identity use is then made of the expansion (4.3). By equalling the coefficients of
zM on both sides, we finally establish the explicit formula

P(β, t) = 1

n̄T (t)

[
n̄T (t) − e−γ t

n̄T (t)

]M

exp

[
− |β|2

n̄T (t)

]
LM

(
− |β|2e−γ t

n̄T (t)[n̄T (t) − e−γ t ]

)
. (4.5)

If the argument of the Laguerre polynomial in equation (4.5) is negative, the P

representation is positive for any β. This implies a time condition which is sufficient for
the existence of the P representation as a well behaved function:

n̄T (t) − e−γ t � 0. (4.6)

At the limit time

tc := 1

γ
ln

(
1 +

1

n̄R

)
(4.7)

all the non-classical properties of the initial Fock state disappear due to the interaction with
the heat bath. Obviously, tc > tm. Note that the non-classicality time tc becomes infinite in
the extreme case of dissipation (n̄R = 0).

5. Conclusions

The existence of a maximum of the 2-entropy, depending on the initial non-classical state, is
undoubtedly a quantum effect emphasized formerly for Gaussian states [9] and more recently
for an even coherent state [10]. The description of the mixing process introduced in [10] for a
field mode in an even coherent state in contact with a thermal reservoir is also appropriate for
a damped Fock state. To sum up, we have recovered here quantities and conditions that have
the same expressions or significance as in [10]:

(a) the mixing time, equation (3.13);
(b) the rate of mixing which can be written in a more general form

"m = 2γ [n̄R + (2n̄R + 1)n̄(0)] (5.1)

where n̄(0) is the initial mean photon number of the field;
(c) the slope of the 2-entropy at the time tm, equation (3.19);
(d) the two regimes of mixing defined by the relation between the mean photon number in

the initial mode and the mean occupancy of the bath;
(e) the time of mixing by dissipation, equation (3.22);
(f) the non-classicality time tc, equation (4.7).

These properties, found in two important particular cases by explicit calculations, are yet
to be derived for an arbitrary input state. Work along these lines is in progress.
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Isar A, Săndulescu A and Scheid W 1993 J. Math. Phys. 34 3887
[7] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: Wiley)
[8] Walls D F and Milburn G J 1988 Phys. Rev. A 38 1087
[9] Marian P and Marian T A 1993 Phys. Rev. A 47 4487

[10] Marian P and Marian T A 2000 Eur. Phys. J. D to appear
[11] Buzek V, Vidiella-Barranco A and Knight P L 1992 Phys. Rev. A 45 6570
[12] Kim M S, Buzek V and Kim M G 1994 Phys. Lett. A 186 283
[13] Glauber R J 1965 Quantum Optics and Electronics (Les Houches, 1964) ed C DeWitt, A Blandin and C Cohen-

Tannoudji (New York: Gordon and Breach) pp 63–185
[14] Weyl H 1950 The Theory of Groups and Quantum Mechanics (New York: Dover)
[15] Glauber R J 1963 Phys. Rev. Lett. 10 84

Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[16] Courant R and Hilbert D 1937 Methoden der Mathematischen Physik vol 2 (Berlin: Springer)
[17] Wehrl A 1978 Rev. Mod. Phys. 50 221
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